Dehydration and structural transformations during thermal treatment of Georgian, Kazakhstani and Armenian natural heulandite-clinoptilolites

Main Article Content

Vladimer Tsitsishvili
Tengiz Machaladze
Nanuli Dolaberidze
Manana Nijaradze
Nato Mirdzveli
Nagima Dzhakipbekova
Lusine Harutyunyan

Abstract

Dehydration and structural transformations during thermal treatment of natural heulandite from the Rkoni plot of the Tedzami deposit (Eastern Georgia), a mixture of heulandite and chabazite from the Chankanay deposit (Kazakhstan, Almaty region), and clinoptilolite from the Nor Kokhb deposit (Armenia, Noyemberian region), selected for the creation of new bactericidal zeolite filter materials for purification and desinfection of water from various sources, have been studied by thermal analysis methods. It was found that the heulandite is stable up to 650 °C, there is no transition to the heulandite B phase, but at high temperatures, the formation of the 9.GB.05 group mineral is quite possible. Clinoptilolite contains 4 water molecules per aluminum atom, is stable up to 600 °C, dehydration continues both during the amorphization process and after its completion. Thermally stable Kazakhstani zeolite contains only one water molecule per aluminum atom, the dehydration process occurs in four stages up to a temperature of 1000 °C.


Google Scholar

Article Details


How to Cite
Tsitsishvili, V., Machaladze, T., Dolaberidze, N., Nijaradze, M., Mirdzveli, N., Dzhakipbekova, N., & Harutyunyan, L. (2022). Dehydration and structural transformations during thermal treatment of Georgian, Kazakhstani and Armenian natural heulandite-clinoptilolites. Scientific Collection «InterConf», (136), 356–364. Retrieved from https://archive.interconf.center/index.php/conference-proceeding/article/view/1952

References

Jiang, N., Shang, R., Heijman, S.G.J., Rietveld, L.C. (2018) ‘High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review’. Water Res., 144, p145-161, https://doi.org/10.1016/j.watres.2018.07.017.

Chmielewská, E. (2019) ‘Natural zeolite: Alternative adsorbent in purification or post-treatment of waters’. In: Mercurio, M., Sarkar, B., Langella, A., (Eds) Micro and Nano Technologies, Modified Clay and Zeolite Nanocomposite Materials, Elsevier, p87-112, https://doi.org/10.1016/B978-0-12-814617-0.00012-8.

Andrunik, M., Bajda, T. (2021) ‘Removal of pesticides from waters by adsorption: comparison between synthetic zeolites and mesoporous silica materials. A review’. Materials (Basel), 14(13), 3532, p1-38, https://doi.org/10.3390/ma14133532.

Grela, A., Kuc, J., Bajda, T. (2021) ‘A review of the application of zeolites and mesoporous silica materials in the removal of non-steroidal anti-flammatory drugs and antibiotics from water’. Materials, 14(17), 4994, p1-24, https://doi.org/10.3390/ma14174994.

De Magalhães, L.F., Da Silva, G.R., Peres, A.E.C. (2022) ‘Zeolite application in wastewater treatment’. Adsoprtion Science and Technology, 2022, Article ID 4544104, p1-26, https://doi.org/10.1155/2022/4544104.

Tsitsishvili, V., Panayotova, M., Miyamoto, M., Dolaberidze, N., Mirdzveli, N., Nijaradze, M., Amiridze, Z., Klarjeishvili, N., Khutsishvili, B., Dzhakipbekova, N., Harutyunyan, L. (2022) ‘Characterization of Georgian, Kazakh and Armenian natu-ral heulandite-clinoptilolites’. Bull. Georgian Natl. Acad. Sci., 16(4), p115-122.

Koizumi, M. (1953) ‘The differential thermal analysis curves and the dehydration curves of zeolites’. Mineralogical Journal, 1(1), p36-47, https://www.jstage.jst.go.jp/article/minerj1953/1/1/1_1_36/_pdf.

Mumpton, F. A. (1960) ‘Clinoptilolite redefined’, Amer. Mineral. 45, p351-369, http://www.minsocam.org/ammin/AM45/AM45_351.pdf.

Pechar, F., Rykl, D. (1985) ‘Study of the thermal stability of the natural zeolite heulandite’. Chemical Papers, 39(3), p369-377, https://www.chemicalpapers.com/file_access.php?file=393a369.pdf.

Baerlocher, Ch., McCusker, L.B., Olson, D.H. (2007) Atlas of zeolite framework types, 6th revised edition. Amsterdam: Elsevier.

Kukobat, R., Škrbić, R., Massiani, P., Baghdad, K., Launay, F., Sarno, M., Cirillo, C., Senatore, A., Salčin, E., Atlagić, S.G. (2022) ‘Thermal and structural stability of microporous natural clinoptilolite zeolite’. Microporous and Mesoporous Materials, 341, p112101, https://doi.org/10.1016/j.micromeso.2022.112101.