Vision transformer for skin cancer classification

Main Article Content

Vladyslav Nikitin
Nataliia Shapoval

Abstract

This paper investigates the use of vision transformers (ViT) for skin cancer classification tasks, compared to convolutional models. We propose a novel ViT architecture that effectively classifies skin cancer images. Our findings suggest that ViT models have the potential to outperform convolutional models, especially with larger datasets.


Google Scholar

CrossRef

OUCI

Scilit

WorldCat

Index Copernicus

Semantic Scholar

Article Details


How to Cite
Nikitin, V., & Shapoval, N. (2023). Vision transformer for skin cancer classification. Scientific Collection «InterConf+», (33(155), 449–460. https://doi.org/10.51582/interconf.19-20.05.2023.039

References

Skin cancer information (2023) The Skin Cancer Foundation. Available at: https://www.skincancer.org/skin-cancer-information/ (Accessed: May 1, 2023).

Skin cancer (no date) American Academy of Dermatology. Available at: https://www.aad.org/media/stats-skin-cancer (Accessed: May 1, 2023).

Adjusted rates 2018 melanoma of skin С43 table 1 - general rates, 2018 (no date). Available at: http://www.ncru.inf.ua/publications/ BULL_21/PDF_E/38-39-mel.pdf (Accessed: May 1, 2023).

Dosovitskiy, A. et al. (2021) An image is worth 16x16 words: Transformers for image recognition at scale, arXiv.org. Available at: https://arxiv.org/abs/2010.11929 (Accessed: May 1, 2023).

Vaswani, A. et al. (2017) Attention is all you need, arXiv.org. Available at: https://arxiv.org/abs/1706.03762 (Accessed: May 1, 2023).

MED-NODE (no date) Dermatology database used in Med-node. Available at: https://www.cs.rug.nl/~imaging/databases/melanoma_naevi/ (Accessed: May 1, 2023).

Tschandl, P. (2023) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions, Harvard Dataverse. Harvard Dataverse. Available at: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi%3A10.7910%2FDVN%2FDBW86T (Accessed: May 1, 2023).

Chen, C.-F., Fan, Q. and Panda, R. (2021) Crossvit: Cross-attention multi-scale vision transformer for Image Classification, arXiv.org. Available at: https://arxiv.org/abs/2103.14899 (Accessed: May 1, 2023). DOI: https://doi.org/10.1109/ICCV48922.2021.00041

Tirth Patel (no date) Tirth27/Skin-cancer-classification-using-deep-learning, GitHub. Available at: https://github.com/Tirth27/Skin-Cancer-Classification-using-Deep-Learning (Accessed: May 1, 2023).