Positive temperature feedback loop in the catalytic cycle of heterogeneous catalysis

Main Article Content

Volodymyr Kaplunenko
Mykola Kosinov

Abstract

The mechanism of heterogeneous catalysis taking into account the influence of temperature is briefly considered in the development of the concept "electron as a catalyst". Here the catalytic cycle includes the heat transfer and electron generation besides the mass transfer. The mechanism of temperature influence in heterogeneous catalysis is realised through the generation of electrons in a positive feedback loop. This mechanism involves the Edison and Seebeck thermoelectronic effects. The catalytic cycle of heterogeneous catalysis is supplemented with a thermoelectronic stage. The thermoelectronic stage of catalysis involves heat transfer and electron generation. Energy transfer to the active centre of the catalyst is an integral part of the catalytic cycle. Energy transfer is considered as a positive temperature feedback loop. The generation of electrons in the positive feedback loop and their transfer to the reactants leads to an increase in reactivity of the reactants. The positive temperature feedback loop leads to an exponential (sigmoidal) dependence of the reaction rate.


Google Scholar

CrossRef

OUCI

Scilit

WorldCat

Index Copernicus

Semantic Scholar

Article Details


How to Cite
Kaplunenko, V., & Kosinov, M. (2023). Positive temperature feedback loop in the catalytic cycle of heterogeneous catalysis. Scientific Collection «InterConf+», (33(155), 305–323. https://doi.org/10.51582/interconf.19-20.05.2023.028

References

Project Information. The Electron as a Catalyst. https://cordis.europa.eu/project/id/692640.

Davis, D.; Vysotskiy, V.P.; Sajeev, Y.; Cederbaum, L.S. Electron Impact Catalytic Dissociation: Two-Bond Breaking by a Low-Energy Catalytic Electron. Angew. Chem. Int. Ed. 2011, 50, 4119–4122. DOI: 10.1002/ange.201005129. DOI: https://doi.org/10.1002/anie.201005129

Davis, D.; Vysotskiy, V.P.; Sajeev, Y.; Cederbaum, L.S. A One-Step Four-Bond-Breaking Reaction Catalyzed by an Electron. Angew. Chem. Int. Ed. 2012, Volume124, Issue32, August 6,2012. Pages 8127-8131. DOI: 10.1002/ange.201204162. DOI: https://doi.org/10.1002/ange.201204162

Daly Davis, Y. Sajeev. COMMUNICATION: Low-energy-electron induced permanently reactive CO2 molecules. July 2014. Physical Chemistry Chemical Physics 16(33). DOI: 10.1039/C4CP02701A. DOI: https://doi.org/10.1039/C4CP02701A

Daly Davis, Y. Sajeev. COMMUNICATION: Low energy electron catalyst: Electronic origin of catalytic strategies. September 2016. Physical Chemistry Chemical Physics 18(40). DOI: 10.1039/C6CP05480C. DOI: https://doi.org/10.1039/C6CP05480C

Davis, D.; Kundu, S.; Prabhudesai, V.S.; Sajeev, Y.; Krishnakumar, E. Formation of CO2 from formic acid through catalytic electron channel. J. Chem. Phys. 149, 064308 (2018); DOI: 10.1063/1.5032172. DOI: https://doi.org/10.1063/1.5032172

Studer, A., Curran, D. The electron is a catalyst. Nature Chem 6, 765–773 (2014). DOI: 10.1038/nchem.2031. DOI: https://doi.org/10.1038/nchem.2031

Jun Xuan, Constantin G. Daniliuc, and Armido Studer . Construction of Polycyclic γ-Lactams and Related Heterocycles via Electron Catalysis. Organic Letters 2016, 18 (24), 6372-6375. DOI: 10.1021/acs.orglett.6b03267. DOI: https://doi.org/10.1021/acs.orglett.6b03267

Shubhadip Mallick, Pan Xu, Ernst-Ulrich Würthwein, Armido Studer. Silyldefluorination of Fluoroarenes by ConcertedNucleophilic Aromatic Substitution. Angewandte Chemie 2019, 131 (1), 289-293. DOI: 10.1002/ange.201808646. DOI: https://doi.org/10.1002/ange.201808646

Abhishek Dewanji, Christian Mück-Lichtenfeld, Armido Studer. Radical Hydrodeiodination of Aryl, Alkenyl, Alkynyl, and Alkyl Iodides with an Alcoholate as Organic Chain Reductant through Electron Catalysis. Angewandte Chemie 2016, 128 (23), 6861-6864. DOI: 10.1002/ange.201601930. DOI: https://doi.org/10.1002/ange.201601930

M. Lübbesmeyer, D. Leifert, H. Schäfer, A. Studer. Electrochemical initiation of electron-catalyzed phenanthridine synthesis by trifluoromethylation of isonitriles. Chemical Communications 2018, 54 (18) , 2240-2243. DOI: 10.1039/C7CC09302K. DOI: https://doi.org/10.1039/C7CC09302K

Dirk Leifert, Denis G. Artiukhin, Johannes Neugebauer, Anzhela Galstyan, Cristian Alejandro Strassert, Armido Studer. Radical perfluoroalkylation – easy access to 2-perfluoroalkylindol-3-imines via electron catalysis. Chemical Communications 2016, 52 (35), 5997-6000. DOI: 10.1039/C6CC02284G. DOI: https://doi.org/10.1039/C6CC02284G

Aragonès, A., Haworth, N., Darwish, N. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016). DOI: 10.1038/nature16989. DOI: https://doi.org/10.1038/nature16989

Pau Besalu-Sala, Miquel Sola, Josep M. Luis, and Miquel Torrent-Sucarrat. Fast and Simple Evaluation of the Catalysis and Selectivity Induced by External Electric Fields. ACS Catal. 2021, 11, 14467− 14479. DOI: 10.1021/acscatal.1c04247. DOI: https://doi.org/10.1021/acscatal.1c04247

Che, F.; Gray, J. T.; Ha, S.; Kruse, N.; Scott, S. L.; McEwen, J.-S. Elucidating the Roles of Electric Fields in Catalysis: A Perspective. ACS Catal. 2018, 8, 5153−5174. DOI: 10.1021/acscatal.7b02899. DOI: https://doi.org/10.1021/acscatal.7b02899

Andrés, J. L.; Lledós, A.; Duran, M.; Bertrán, J. Electric Fields Acting as Catalysts in Chemical Reactions. An ab Initio Study of the Walden Inversion Reaction. Chem. Phys. Lett. 1988, 153, 82−86. DOI: 10.1016/0009-2614(88)80136-2. DOI: https://doi.org/10.1016/0009-2614(88)80136-2

Carbonell, E.; Duran, M.; Lledós, A.; Bertrán, J. Catalysis of Friedel-Crafts Reactions by Electric Fields. J. Phys. Chem. A. 1991, 95, 179−183. DOI: 10.1021/j100154a036. DOI: https://doi.org/10.1021/j100154a036

Giovanni Camera-Roda, Carlos A.Martin. Design of photocatalytic reactors made easy by considering the photons as immaterial reactants. Solar Energy. Volume 79, Issue 4, October 2005, Pages 343-352. DOI: 10.1016/j.solener.2005.02.025. DOI: https://doi.org/10.1016/j.solener.2005.02.025

Janhavi Dere Effect of an external electric field on the oxidation of CO to CO2 on a nickel oxide catalyst December 1974 Journal of Catalysis 35(3):369-375 DOI: 10.1016/00219517(74)90219-X. DOI: https://doi.org/10.1016/0021-9517(74)90219-X

Hidefumi Hiura, Atef Shalabney, Jino George. Vacuum-Field Catalysis: Accelerated Reactions by Vibrational Ultra Strong Coupling. 26.05.2021. DOI: 10.26434/chemrxiv.7234721.v4. DOI: https://doi.org/10.26434/chemrxiv.7234721

Hidefumi Hiura and Atef Shalabney. A Reaction Kinetic Model for Vacuum-Field Catalysis Based on Vibrational LightMatter Coupling. 07.08.2019. DOI: 10.26434/chemrxiv.9275777. DOI: https://doi.org/10.26434/chemrxiv.9275777

Stoukides, M.; Vayenas, C. G. The Effect of Electrochemical Oxygen Pumping on the Rate and Selectivity of Ethylene Oxidation on Polycrystalline Silver. J. Catal. 1981, 70 (1), 137– 146, DOI: 10.1016/0021-9517(81)90323-7. DOI: https://doi.org/10.1016/0021-9517(81)90323-7

Thejas S. Wesley, Yuriy Román-Leshkov and Yogesh Surendranath. Spontaneous Electric Fields Play a Key Role in Thermochemical Catalysis at Metal−Liquid Interfaces. ACS Cent. Sci. 2021, 7, 6, 1045–1055. Publication Date:June 2, 2021. DOI: 10.1021/acscentsci.1c00293. DOI: https://doi.org/10.1021/acscentsci.1c00293

Vayenas, C. G.; Bebelis, S.; Ladas, S. Dependence of Catalytic Rates on Catalyst Work Function. Nature 1990, 343, 625–627, DOI: 10.1038/343625a0. DOI: https://doi.org/10.1038/343625a0

Warburton, R. E.; Hutchison, P.; Jackson, M. N.; Pegis, M. L.; Surendranath, Y.; Hammes-Schiffer, S. Interfacial Field-Driven Proton-Coupled Electron Transfer at Graphite- Conjugated Organic Acids. J. Am. Chem. Soc. 2020, 142 (49), 20855– 20864, DOI: 10.1021/jacs.0c10632. DOI: https://doi.org/10.1021/jacs.0c10632

Shaik, S.; Danovich, D.; Joy, J.; Wang, Z.; Stuyver, T. Electric-Field Mediated Chemistry: Uncovering and Exploiting the Potential of (Oriented) Electric Fields to Exert Chemical Catalysis and Reaction Control. J. Am. Chem. Soc. 2020, 142 (29), 12551– 12562, DOI: 10.1021/jacs.0c05128. DOI: https://doi.org/10.1021/jacs.0c05128

Bockris, J. O.; Reddy, A.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Springer: Boston, MA, 2000.

Neophytides, S. G.; Tsiplakides, D.; Stonehart, P.; Jaksic, M. M.; Vayenas, C. G. Electrochemical Enhancement of a Catalytic Reaction in Aqueous Solution. Nature 1994, 370, 45–47, DOI: 10.1038/370045a0. DOI: https://doi.org/10.1038/370045a0

Vayenas, C. G.; Bebelis, S.; Pliangos, C.; Brosda, S.; Tsiplakides, D. Electrochemical Activation of Catalysis: Promotion, Electrochemical Promotion, and Metal-Support Interactions; Kluwer Academic/Plenum Publishers: New York, 2001.

Zang, Y., Zou, Q., Fu, T. et al. Directing isomerization reactions of cumulenes with electric fields. Nat Commun 10, 4482 (2019). DOI: 10.1038/s41467-019-12487-w. DOI: https://doi.org/10.1038/s41467-019-12487-w

Anirban Das, Gyandshwar Kumar Rao, Kasinath Ojha. Photoelectrochemical Generation of Fuels. (2022). ISBN: 9781003211761. DOI: 10.1201/9781003211761. DOI: https://doi.org/10.1201/9781003211761

XIAOYAN HUANG, CHUN TANG, JIEQIONG LI, et. al. Electric field–induced selective catalysis of single-molecule reaction. SCIENCE ADVANCES. 21 Jun 2019. Vol 5, Issue 6. DOI: 10.1126/sciadv.aaw3072 DOI: https://doi.org/10.1126/sciadv.aaw3072

33.Nadia G. Léonard, Rakia Dhaoui, Teera Chantarojsiri, Jenny Y. Yang. Electric Fields in Catalysis: From Enzymes to Molecular Catalysts. ACS Catal. 2021, 11, 17, 10923–10932. DOI: 10.1021/acscatal.1c02084. DOI: https://doi.org/10.1021/acscatal.1c02084

Achour A, Liu J, Peng P, Shaw C & Huang Z (2018) In-situ tuning of catalytic activity by thermoelectric effect for ethylene oxidation, ACS Catalysis, 8 (11) 10164-10172. DOI: https://doi.org/10.1021/acscatal.8b02409

Achour A, Chen K, Reece MJ & Huang Z (2018) Enhanced thermoelectric performance of Cs doped BiCuSeO prepared through eco-friendly flux synthesis, Journal of Alloys and Compounds, 735 (February) 861-869. DOI: https://doi.org/10.1016/j.jallcom.2017.11.104

Achour A, Chen K, Reece MJ & Huang Z (2018) Tuning of catalytic activity by thermoelectric materials for carbon dioxide hydrogenation, Advanced Energy Materials, 8 (5) Article No. 1701430. DOI: https://doi.org/10.1002/aenm.201701430

Yoon, J., Jang, H., Oh, MW. et al. Heat-fueled enzymatic cascade for selective oxyfunctionalization of hydrocarbons. Nat Commun 13, 3741 (2022). DOI: 10.1038/s41467-022-31363-8 DOI: https://doi.org/10.1038/s41467-022-31363-8

Onn, T. M.; Gathmann, S.; Guo, S.; Solanki, S. P. S.; Walton, A.; Page, B.; Rojas, G.; Neurock, M.; Grabow, L. C.; Mkhoyan, K. A.; Abdelrahman, O. A.; Frisbie, C. D.; Dauenhauer, P. J. Platinum Graphene Catalytic Condenser for Millisecond Programmable Metal Surfaces. ChemRxiv 2022. DOI: 10.26434/chemrxiv-2022-ll557. DOI: https://doi.org/10.26434/chemrxiv-2022-ll557

Abdelrahman O, Dauenhauer P. Energy Flows in Static and Programmable Catalysts. ChemRxiv Pub Date : 2023-02-23 , DOI: 10.26434/chemrxiv-2023-2svfb. DOI: https://doi.org/10.26434/chemrxiv-2023-2svfb-v2

Vassalini I, Alessandri I. Switchable Stimuli-Responsive Heterogeneous Catalysis. Catalysts. 2018; 8(12):569. DOI: 10.3390/catal8120569. DOI: https://doi.org/10.3390/catal8120569

Uchida Hiroshi, Todo Naoyuki. Thermionic Emission from Catalyst for Ammonia Synthesis. I. Electron Microscopic Images of the Catalysts. Bulletin of the Chemical Society of Japan. Volume 27, Issue 9. 1954, Vol.27, No.9. DOI: 10.1246/bcsj.27.585. DOI: https://doi.org/10.1246/bcsj.27.585

KEN'ICHI HIRATSUKA, CZESLAW KAJDAS & MAKOTO YOSHIDA (2004) Tribo-Catalysis in the Synthesis Reaction of Carbon Dioxide, Tribology Transactions, 47:1, 86-93, DOI: 10.1080/05698190490278967. DOI: https://doi.org/10.1080/05698190490278967

Andrea Baldi and Sven H. C. Askes. Pulsed Photothermal Heterogeneous Catalysis. ACS Catal. 2023, 13, 5, 3419–3432. DOI: 10.1021/acscatal.2c05435. DOI: https://doi.org/10.1021/acscatal.2c05435

Yushuai Xu, Jian Han, Yidong Luo, Yaochun Liu, Junping Ding, Zhifang Zhou, Chan Liu, Mingchu Zou, Jinle Lan, Ce-wen Nan, Yuanhua Lin. Enhanced CO2 Reduction Performance of BiCuSeO-Based Hybrid Catalysts by Synergetic Photo-Thermoelectric Effect. First published: 02 July 2021. DOI: 10.1002/adfm.202105001. DOI: https://doi.org/10.1002/adfm.202105001

Song Lei, Ao Wang, Jian Xue and Haihui Wang. Catalytic ceramic oxygen ionic conducting membrane reactors for ethylene production. React. Chem. Eng., 2021,6, 1327-1341 DOI: https://doi.org/10.1039/D1RE00136A

Luca Mascaretti and Alberto Naldonia. Hot electron and thermal effects in plasmonic photocatalysis. Journal of Applied Physics 128, 041101 (2020); DOI: 10.1063/5.0013945. DOI: https://doi.org/10.1063/5.0013945

Dubi Y, Un IW, Sivan Y. Thermal effects - an alternative mechanism for plasmon-assisted photocatalysis. Chem Sci. 2020 Apr 21;11(19):5017-5027. DOI: 10.1039/c9sc06480j. PMID: 34122958; PMCID: PMC8159236. DOI: https://doi.org/10.1039/C9SC06480J

Gallagher, J. Thermoelectric avenue. Nat Energy 2, 834 (2017). DOI: 10.1038/s41560-017-0040-9. DOI: https://doi.org/10.1038/s41560-017-0040-9

Volodymyr Kaplunenko, Mykola Kosinov. THE CONCEPT OF ELECTRON AS A CATALYST IS THE KEY TO UNLOCKING THE SECRETS OF CATALYSIS. January 2023. DOI: 10.13140/RG.2.2.22445.97760.

Volodymyr Kaplunenko, Mykola Kosinov. FROM THE "ELECTRON AS A CATALYST" CONCEPT TO A NEW PARADIGM OF CATALYSIS. December 2022, DOI: 10.13140/RG.2.2.29232.64008.

Volodymyr Kaplunenko, Mykola Kosinov. FROM THE "ELECTRON AS A CATALYST" CONCEPT TO THE LAWS OF CATALYSIS. DOI: 10.13140/RG.2.2.16467.86567.

Volodymyr Kaplunenko, Mykola Kosinov. (2022). From the concept of "Electron as a catalyst" to a single mechanism of catalytic reactions. Scientific Collection «InterConf+», 28(137), 339–357. DOI: 10.51582/interconf.19-20.12.2022.036. DOI: https://doi.org/10.51582/interconf.19-20.12.2022.036

Volodymyr Kaplunenko, Mykola Kosinov. CATALYSIS: A FUNDAMENTAL PHENOMENON AT THE INTERFACE BETWEEN SCIENCES AND DISCIPLINESS. October 2022. DOI: 10.13140/RG.2.2.18460.97920

Kaplunenko V. G. Kosinov M. V. (2021). TOF AND TON EVOLUTION IN HETEROGENEOUS CATALYSIS. InterConf, (93), 417-450. DOI: 10.51582/interconf.21-22.12.2021.046. DOI: https://doi.org/10.51582/interconf.21-22.12.2021.046

Kaplunenko, V., & Kosinov, M. (2022). LAWS OF HETEROGENEOUS CATALYSIS. InterConf, (105), 376-398. DOI: 10.51582/interconf.19-20.04.2022.037.

Kaplunenko, V., & Kosinov, M. (2021). DONOR-ACCEPTOR THEORY OF HETEROGENEOUS CATALYSIS. InterConf, (71), 316-331. DOI: 10.51582/interconf.19-20.08.2021.031. DOI: https://doi.org/10.51582/interconf.19-20.08.2021.031

Kaplunenko, V., & Kosinov, M. (2022). LAWS OF HOMOGENEOUS CATALYSIS. DOI: https://doi.org/10.51582/interconf.19-20.04.2022.037

https://www.researchgate.net/publication/361587838_LAWS_OF_HOMOGENEOUS_CATALYSIS

Volodymyr Kaplunenko, Mykola Kosinov. Electric field - induced catalysis. Laws of field catalysis. DOI: 10.51582/interconf.19-20.10.2022.037. DOI: https://doi.org/10.51582/interconf.19-20.10.2022.037

Volodymyr Kaplunenko, Mykola Kosinov. Changing the paradigm of catalysis: breaking stereotypes. November 2022. DOI: 10.51582/interconf.19-20.11.2022.027. DOI: https://doi.org/10.51582/interconf.19-20.11.2022.027

Volodymyr Kaplunenko, Mykola Kosinov. ELECTROLYSIS AS A TYPE OF CATALYSIS: THE SAME MECHANISM, GENERAL LAWS AND THE SINGLE NATURE OF CATALYSIS AND ELECTROLYSIS. February 2023. DOI: 10.13140/RG.2.2.34049.12643. [62] Cao, D., Xu, H., Li, H. et al. Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution. Nat Commun 13, 5843 (2022). DOI: 10.1038/s41467-022-33589-y. DOI: https://doi.org/10.1038/s41467-022-33589-y

Feedback Theory and Its Applications By P. H. Hammond. (Applied Physics Guides.) Pp. 348. (London : English Universities Press, Ltd., 1958.).

Sawato T, Yamaguchi M. Synthetic Chemical Systems Involving Self-Catalytic Reactions of Helicene Oligomer Foldamers. Chempluschem. 2020 Sep;85(9):2017-2038. DOI: 10.1002/cplu.202000489. DOI: https://doi.org/10.1002/cplu.202000489

Tsukasa Sawato, Nozomi Saito, and Masahiko Yamaguchi. Chemical Systems Involving Two Competitive Self-Catalytic Reactions. ACS Omega 2019, 4, 3, 5879–5899. DOI: 10.1021/acsomega.9b00133. DOI: https://doi.org/10.1021/acsomega.9b00133