Зміна парадигми каталізу: ломка стереотипів

Main Article Content

Володимир Каплуненко
Микола Косінов

Abstract

У статті запропоновано нову парадигму каталізу, що сформована як природний розвиток передових концепцій каталізу, таких як "електрон - каталізатор", "протон - каталізатор" і "концепція ступеня окиснення". Нова парадигма каталізу побудована на ідеї існування в природі всього лише двох універсальних каталізаторів, які здатні збільшувати реакційну здатність великого класу хімічних речовин. Доповнення концепцій "електрон - каталізатор", "протон - каталізатор" і "концепції ступеня окиснення" "концепцією двох зарядово-симетричних фундаментальних каталізаторів" дало змогу зробити важливі узагальнення в теорії каталізу, усунути суперечності, накопичені за тривалу історію каталізу, й отримати закони каталізу. Двох зарядово-симетричних каталізаторів виявилося достатньо, щоб, не вдаючись до незліченного сімейства традиційних каталізаторів, дати несуперечливі пояснення каталітичному феномену. Справжніми каталізаторами є фундаментальні об'єкти мікросвіту - елементарні частинки: електрон і протон. Численні речовини, які традиційно вважалися каталізаторами, такими не є. У новій парадигмі каталізу їм відведена роль попередників каталізаторів. Показано необхідність уточнення та зміни термінології каталізу. Спільним механізмом для каталітичних реакцій у різних видах каталізу є механізм, що ґрунтується на перенесенні електричних зарядів електронами та протонами і на зміні за їхньою участю ступеню окиснення реагентів. Розроблено естафетний донорно-акцепторний механізм як універсальний механізм каталізу. Усі хімічні реакції слід вважати каталітичними. Ті реакції, які традиційно відносили до некаталітичних реакцій, належать до класу автокаталітичних реакцій. У них каталізаторами є електрон або протон, а роль попередника виконує один із реагентів.


Google Scholar

CrossRef

OUCI

Scilit

WorldCat

Index Copernicus

Semantic Scholar

Article Details


How to Cite
Каплуненко, В., & Косінов, М. (2022). Зміна парадигми каталізу: ломка стереотипів. Scientific Collection «InterConf+», (27(133), 285–303. https://doi.org/10.51582/interconf.19-20.11.2022.027
Author Biographies

Володимир Каплуненко, «Наноматеріали і нанотехнології»

доктор технічних наук, професор

Микола Косінов, «Наноматеріали і нанотехнології»

кандидат технічних наук, доцент,

References

Romanovsky B. V. Modern catalysis: Science or art? Soros educational journal. Volume 6. No. 9, 2000, p. 43-48.

G. C. Bond. Catalysis: art or science? Chem. Prod., 18, N 8, 300 (1955).

W. Ostwald, Science of Colloids, Electrical Engineering, Heterogeneous Catalysis, §9-10, 1932.

Pisarzhevsky L.V. Selected Works. Ed. Academy of Sciences of the Ukrainian SSR, 1936.

L. V. Pisarzhevsky, On the Theory of Heterogeneous Catalysis, Bulletin of the Academy of Sciences of the USSR. VII series. Department of Mathematical and Natural Sciences, 1933, Issue 4, 571–588

L.V. Pisarzhevsky and M.A. Rozenberg, Inorganic Chemistry, pp. 521-529, 1933.

Roginsky S.Z.Problems of kinetics and catalysis, VI, 10 (1949).

Hauff K./Advances in Catalysis.— 1957.— V. 9.— P. 187—203. DOI: https://doi.org/10.1016/S0360-0564(08)60167-4

D. A. Dowden. J. Chem. Soc., 1950, 242. DOI: https://doi.org/10.1039/jr9500000242

Volkenshtein, F. F. The Electronic Theory of Catalysis on Semiconductors. Pergamon Press, 1963.

Ryan Hawtof, Souvik Ghosh, Evan Guarr, Cheyan Xu, R. Mohan Sankaran, Julie Nicole Renner. Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system // Science Advances. 2019. V. 5. eaat5778. DOI: 10.1126/sciadv.aat5778. DOI: https://doi.org/10.1126/sciadv.aat5778

US Patent Application 20190292063. AMMONIA SYNTHESIS USING PLASMA-PRODUCED ELECTRONS. МПК C01C 1/04; C25B 1/04; C25B 11/02; C25B 11/04. 09/26/2019.)

Rumbach, P., Bartels, D., Sankaran, R. et al. The solvation of electrons by an atmospheric-pressure plasma. Nat Commun 6, 7248 (2015). https://doi.org/10.1038/ncomms8248 DOI: https://doi.org/10.1038/ncomms8248

Zhu, D., Zhang, L., Ruther, R. et al. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nature Mater 12, 836–841 (2013). https://doi.org/10.1038/nmat3696 DOI: https://doi.org/10.1038/nmat3696

Fast and Simple Evaluation of the Catalysis and Selectivity Induced by External Electric Fields. Pau Besalu-Sala, Miquel Sola, Josep M. Luis, and Miquel Torrent-Sucarrat. ACS Catal. 2021, 11, 14467−14479. https://doi.org/10.1021/acscatal.1c04247.

E. J. Hart und M. Anbar: The Hydrated Electron. Wiley-Inter-science, New York 1970. 267 Seiten. .)

Pau Besalu-Sala, Miquel Sola, Josep M. Luis, and Miquel Torrent-Sucarrat. Fast and Simple Evaluation of the Catalysis and Selectivity Induced by External Electric Fields. ACS Catal. 2021, 11, 14467−14479. https://doi.org/10.1021/acscatal.1c04247.

MacMillan, D. The advent and development of organocatalysis. Nature 455, 304–308 (2008). https://doi.org/10.1038/nature07367. DOI: https://doi.org/10.1038/nature07367

Benjamin List. The ying and yang of asymmetric aminocatalysis. Chemical Communications. Volume: 2006, Issue: 8, pp 819-824. DOI: 10.1039 / B514296M. DOI: https://doi.org/10.1039/b514296m

Lennart Eberson, Catalysis by electron transfer in organic chemistry, Journal of Molecular Catalysis, Volume 20, Issue 1, 1983, Pages 27-52, ISSN 0304-5102 https://doi.org/10.1016/0304-5102(83)83012-0.) , DOI: https://doi.org/10.1016/0304-5102(83)83012-0

Studer, A., Curran, D. The electron is a catalyst. Nature Chem 6, 765–773 (2014). https://doi.org/10.1038/nchem.2031 DOI: https://doi.org/10.1038/nchem.2031

Jiao, Y., Qiu, Y., Zhang, L. et al. Electron-catalysed molecular recognition. Nature 603, 265–270 (2022). https://doi.org/10.1038/s41586-021-04377-3) DOI: https://doi.org/10.1038/s41586-021-04377-3

Julius Gemen, Rafal Klajn. Electron catalysis expands the supramolecular chemist’s toolbox. May 2022. Chem 8(5):1183-1186. DOI: 10.1016/j.chempr.2022.04.022 DOI: https://doi.org/10.1016/j.chempr.2022.04.022

Project Information. The Electron as a Catalyst. https://cordis.europa.eu/project/id/692640

Low energy electron catalyst: the electronic origin of catalytic strategies. Daly Davis and Y. Sajeev . Phys. Chem. Chem. Phys., 2016,18, 27715-27720. DOI https://doi.org/10.1039/C6CP05480C DOI: https://doi.org/10.1039/C6CP05480C

Francke, R.; Little, R. D. “Electrons and Holes as Catalysts in Organic Electrosynthesis”, ChemElectroChem, 2019, 6, 4373-4382 [https://doi.org/10.1002/celc.201900432 DOI: https://doi.org/10.1002/celc.201900432

Pankaz K Sharma 1, Zhen T Chu, Mats H M Olsson, Arieh Warshel. A new paradigm for electrostatic catalysis of radical reactions in vitamin B12 enzymes. Proc Natl Acad Sci U S A . 2007 Jun 5;104(23):9661-6. doi: 10.1073/pnas.0702238104. Epub 2007 May 21. DOI: 10.1073/ pnas.0702238104) DOI: https://doi.org/10.1073/pnas.0702238104

Warshel A (1991) Computer Modeling of Chemical Reactions in Enzymes and Solutions (Wiley, New York).

Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MHM (2006) Chem Rev 106:3210–3235. DOI: https://doi.org/10.1021/cr0503106

Yang Jiao, J.Fraser Stoddart. Electron / hole catalysis: A versatile strategy for Promoting chemical transformations. October 2022. DOI: 10.1016/j.tet.2022.133065) DOI: https://doi.org/10.1016/j.tet.2022.133065

Gu Z Y, Cao J J, Wang S Y and Ji S J. (2016). The involvement of the trisulfur radical anion in electroncatalyzed sulfur insertion reactions: facile synthesis of benzothiazine derivatives under transition metal-free conditions Chem. Sci. 7 4067 DOI: https://doi.org/10.1039/C6SC00240D

Okura K, Teranishi T, Yoshida Y and Shirakawa E 2018 Electron-Catalyzed Cross-Coupling of Arylboron Compounds with Aryl Iodides Angew. Chem. Int. Ed. 57 7186 DOI: https://doi.org/10.1002/anie.201802813

Pitzer L, Sandfort F, Strieth-Kalthoff F and Glorius F (2017). Intermolecular Radical Addition to Carbonyls Enabled by Visible Light Photoredox Initiated Hole Catalysislena J. Am. Chem. Soc. 139 13652 DOI: https://doi.org/10.1021/jacs.7b08086

ELECTROCATALYSIS: APPLICATIONS IN COORDINATION, BIOINORGANIC AND ORGANOMETALLIC CHEMISTRIES Armando J. L. Pombeiro. (2015) DOI:http://dx.doi.org/10.14195/978-989-26-0410-7 DOI: https://doi.org/10.14195/978-989-26-0410-7

Yoshihiro Owatari, Shuta Iseki, Daiji Ogata, and Junpei Yuasa. Catalytic electron drives host–guest recognition. Chem Sci. 2022 May 11; 13(18): 5261–5267. doi: 10.1039/d2sc01342h DOI: https://doi.org/10.1039/D2SC01342H

Aankhi Khamrai, Venkataraman Ganesh. How to train free radicals for organic synthesis? A modern approach. Journal of Chemical Sciences 2021, 133 (1) https://doi.org/10.1007/s12039-020-01868-0) DOI: https://doi.org/10.1007/s12039-020-01868-0

Tzu-Hsin Chan, Po-Tuan Chen, Hsuan-Hau Chang, Ming-Yu Lai, Michitoshi Hayashi, Juen-Kai Wang, Yuh-Lin Wang. Autocatalytic reaction in hydrolysis of difructose anhydride III. J Phys Chem A. 2011 Sep 22;115(37):10309-14. Epub 2011 Aug 26. DOI: 10.1021/jp206494r DOI: https://doi.org/10.1021/jp206494r

Vetticatt M J, Desai A A, Wulff W D. Isotope effects and mechanism of the asymmetric BOROX Brønsted acid catalyzed aziridination reaction. The Journal of Organic Chemistry, 21 May 2013, 78(11):5142-5152. DOI: 10.1021/jo302783d DOI: https://doi.org/10.1021/jo302783d

Bender, Myron L.; Bergeron, Raymond J.; Komiyama, Makoto (1984). The Bioorganic Chemistry of Enzymatic Catalysis. Протон как катализатор , стр 61 - 66. ISBN 978-0471059912.

Jung, S.H.; Choe, J.C. Mechanisms of prebiotic adenine synthesis from HCN by oligomerization in the gas phase. Astrobiology 2013, 13, 465–475 ] DOI: https://doi.org/10.1089/ast.2013.0973

Einar Uggerud. Computational Methods in Ion Chemistry. Applications to Unimolecular and Bimolecular Reactions of Organic Ions. 13th IMSC, Budapest 1994 13th INTERNATIONAL MASS SPECTROMETRY CONFERENCE. 29 AUCUST-2 SEPTEMBER 1994 BUDAPEST, HUNGARY.

Kozlov N.S. 5,6-Benzoquinolines. Minsk: Nauka i Tekhnika, 1970. - 136 pages.

Afanas'ev V.A., Zaikov G.E. In the World of Catalysis. Moscow: Nauka, 1977. - 107 с.

E. N. Eremin. Fundamentals of Chemical Kinetics. Moscow: - Higher School. - 1976.

M. Kolesnikov. Catalysis in the gas and oil industry.-M. 2012. ISBN 5-93969-021-1.

Kirshenboim O, Frenklah A, Kozuch S. Switch chemistry at cryogenic conditions: quantum tunnelling under electric fields. Chemical Science. 2020. 12: 3179-3187. PMID 34164085 DOI: 10.1039/d0sc06295b DOI: https://doi.org/10.1039/D0SC06295B

Aragonès, A., Haworth, N., Darwish, N. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016). https://doi.org/10.1038/nature16989 DOI: https://doi.org/10.1038/nature16989

Pau Besalu-Sala, Miquel Sola, Josep M. Luis, and Miquel Torrent-Sucarrat. Fast and Simple Evaluation of the Catalysis and Selectivity Induced by External Electric Fields. ACS Catal. 2021, 11, 14467− 14479. https://doi.org/10.1021/acscatal.1c04247. DOI: https://doi.org/10.1021/acscatal.1c04247

Che, F.; Gray, J. T.; Ha, S.; Kruse, N.; Scott, S. L.; McEwen, J.-S. Elucidating the Roles of Electric Fields in Catalysis: A Perspective. ACS Catal. 2018, 8, 5153−5174. https://doi.org/10.1021/ acscatal.7b02899 DOI: https://doi.org/10.1021/acscatal.7b02899

Max J. Hulsey, Chia Wei Lim and Ning Yan. Promoting heterogeneous catalysis beyond catalyst design Chem. Sci., 2020, 11, 1456-1468. DOI:10.1039/C9SC05947D DOI: https://doi.org/10.1039/C9SC05947D

Andrés, J. L.; Lledós, A.; Duran, M.; Bertrán, J. Electric Fields Acting as Catalysts in Chemical Reactions. An ab Initio Study of the Walden Inversion Reaction. Chem. Phys. Lett. 1988, 153, 82− 86. https://doi.org/10.1016/0009-2614(88)80136-2 DOI: https://doi.org/10.1016/0009-2614(88)80136-2

Carbonell, E.; Duran, M.; Lledós, A.; Bertrán, J. Catalysis of Friedel-Crafts Reactions by Electric Fields. J. Phys. Chem. A. 1991, 95, 179−183. https://doi.org/10.1021/j100154a036 DOI: https://doi.org/10.1021/j100154a036

Giovanni Camera-Roda, Carlos A.Martin. Design of photocatalytic reactors made easy by considering the photons as immaterial reactants. Solar Energy. Volume 79, Issue 4, October 2005, Pages 343-352. https://doi.org/10.1016/j.solener.2005.02.025 DOI: https://doi.org/10.1016/j.solener.2005.02.025

Janhavi Dere Effect of an external electric field on the oxidation of CO to CO2 on a nickel oxide catalyst December 1974 Journal of Catalysis 35(3):369-375 DOI: 10.1016/0021-9517(74)90219-X DOI: https://doi.org/10.1016/0021-9517(74)90219-X

Hidefumi Hiura, Atef Shalabney, Jino George. Vacuum-Field Catalysis: Accelerated Reactions by Vibrational Ultra Strong Coupling. 26.05.2021. DOI: 10.26434/chemrxiv.7234721.v4 DOI: https://doi.org/10.26434/chemrxiv.7234721

Hidefumi Hiura and Atef Shalabney. A Reaction Kinetic Model for Vacuum-Field Catalysis Based on Vibrational LightMatter Coupling. 07.08.2019. DOI: 10.26434/chemrxiv.9275777 DOI: https://doi.org/10.26434/chemrxiv.9275777

Stoukides, M.; Vayenas, C. G. The Effect of Electrochemical Oxygen Pumping on the Rate and Selectivity of Ethylene Oxidation on Polycrystalline Silver. J. Catal. 1981, 70 (1), 137– 146, DOI: 10.1016/0021-9517(81)90323-7 DOI: https://doi.org/10.1016/0021-9517(81)90323-7

Thejas S. Wesley, Yuriy Román-Leshkov and Yogesh Surendranath. Spontaneous Electric Fields Play a Key Role in Thermochemical Catalysis at Metal−Liquid Interfaces. ACS Cent. Sci. 2021, 7, 6, 1045–1055. Publication Date:June 2, 2021. https://doi.org/10.1021/ acscentsci.1c00293) DOI: https://doi.org/10.1021/acscentsci.1c00293

Vayenas, C. G.; Bebelis, S.; Ladas, S. Dependence of Catalytic Rates on Catalyst Work Function. Nature 1990, 343, 625– 627, DOI: 10.1038/343625a0 DOI: https://doi.org/10.1038/343625a0

Warburton, R. E.; Hutchison, P.; Jackson, M. N.; Pegis, M. L.; Surendranath, Y.; Hammes-Schiffer, S. Interfacial Field-Driven Proton-Coupled Electron Transfer at Graphite-Conjugated Organic Acids. J. Am. Chem. Soc. 2020, 142 (49), 20855– 20864, DOI: 10.1021/jacs.0c10632 DOI: https://doi.org/10.1021/jacs.0c10632

Shaik, S.; Danovich, D.; Joy, J.; Wang, Z.; Stuyver, T. Electric-Field Mediated Chemistry: Uncovering and Exploiting the Potential of (Oriented) Electric Fields to Exert Chemical Catalysis and Reaction Control. J. Am. Chem. Soc. 2020, 142 (29), 12551– 12562, DOI: 10.1021/jacs.0c05128 DOI: https://doi.org/10.1021/jacs.0c05128

Bockris, J. O.; Reddy, A.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Springer: Boston, MA, 2000.

Nadia G. Léonard, Rakia Dhaoui, Teera Chantarojsiri, Jenny Y. Yang. Electric Fields in Catalysis: From Enzymes to Molecular Catalysts. ACS Catal. 2021, 11, 17, 10923–10932. https://doi.org/10.1021/ acscatal.1c02084. DOI: https://doi.org/10.1021/acscatal.1c02084

Neophytides, S. G.; Tsiplakides, D.; Stonehart, P.; Jaksic, M. M.; Vayenas, C. G. Electrochemical Enhancement of a Catalytic Reaction in Aqueous Solution. Nature 1994, 370, 45– 47, DOI: 10.1038/370045a0 DOI: https://doi.org/10.1038/370045a0

Vayenas, C. G.; Bebelis, S.; Pliangos, C.; Brosda, S.; Tsiplakides, D. Electrochemical Activation of Catalysis: Promotion, Electrochemical Promotion, and Metal-Support Interactions; Kluwer Academic/Plenum Publishers: New York, 2001.

Wasileski, S. A.; Janik, M. J. A First-Principles Study of Molecular Oxygen Dissociation at an Electrode Surface: A Comparison of Potential Variation and Coadsorption Effects. Phys. Chem. Chem. Phys. 2008, 10 (25), 3613– 3627, DOI: 10.1039/b803157f DOI: https://doi.org/10.1039/b803157f

Gorin, C. F.; Beh, E. S.; Kanan, M. W. An Electric Field-Induced Change in the Selectivity of a Metal Oxide-Catalyzed Epoxide Rearrangement. J. Am. Chem. Soc. 2012, 134 (1), 186– 189, DOI: 10.1021/ja210365j. DOI: https://doi.org/10.1021/ja210365j

Gorin, C. F.; Beh, E. S.; Bui, Q. M.; Dick, G. R.; Kanan, M. W. Interfacial Electric Field Effects on a Carbene Reaction Catalyzed by Rh Porphyrins. J. Am. Chem. Soc. 2013, 135 (30), 11257– 11265, DOI: 10.1021/ja404394z DOI: https://doi.org/10.1021/ja404394z

Lau, V. M.; Gorin, C. F.; Kanan, M. W. Electrostatic Control of Regioselectivity via Ion Pairing in a Au(I)-Catalyzed Rearrangement. Chem. Sci. 2014, 5, 4975– 4979, DOI: 10.1039/ C4SC02058H DOI: https://doi.org/10.1039/C4SC02058H

Fried, S. D.; Bagchi, S.; Boxer, S. G. Extreme Electric Fields Power Catalysis in the Active Site of Ketosteroid Isomerase. Science 2014, 346 (6216), 1510– 1514, DOI: 10.1126/science.1259802. DOI: https://doi.org/10.1126/science.1259802

Liu, C. T.; Layfield, J. P.; Stewart, R. J.; French, J. B.; Hanoian, P.; Asbury, J. B.; Hammes-Schiffer, S.; Benkovic, S. J. Probing the Electrostatics of Active Site Microenvironments along the Catalytic Cycle for Escherichia Coli Dihydrofolate Reductase. J. Am. Chem. Soc. 2014, 136 (29), 10349– 10360, DOI: 10.1021/ja5038947 DOI: https://doi.org/10.1021/ja5038947

Klinska, M.; Smith, L. M.; Gryn’ova, G.; Banwell, M. G.; Coote, M. L. Experimental Demonstration of pH-Dependent Electrostatic Catalysis of Radical Reactions. Chem. Sci. 2015, 6 (10), 5623– 5627, DOI: 10.1039/C5SC01307K. DOI: https://doi.org/10.1039/C5SC01307K

Shaik, S.; Mandal, D.; Ramanan, R. Oriented Electric Fields as Future Smart Reagents in Chemistry. Nat. Chem. 2016, 8 (12), 1091– 1098, DOI: 10.1038/nchem.2651. DOI: https://doi.org/10.1038/nchem.2651

Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J.-M. Through-Space Charge Interaction Substituent Effects in Molecular Catalysis Leading to the Design of the Most Efficient Catalyst of CO2-to-CO Electrochemical Conversion. J. Am. Chem. Soc. 2016, 138 (51), 16639– 16644, DOI: 10.1021/jacs.6b07014. DOI: https://doi.org/10.1021/jacs.6b07014

Beh, E. S.; Basun, S. A.; Feng, X.; Idehenre, I. U.; Evans, D. R.; Kanan, M. W. Molecular Catalysis at Polarized Interfaces Created by Ferroelectric BaTiO3. Chem. Sci. 2017, 8 (4), 2790– 2794, DOI: 10.1039/C6SC05032H DOI: https://doi.org/10.1039/C6SC05032H

Reath, A. H.; Ziller, J. W.; Tsay, C.; Ryan, A. J.; Yang, J. Y. Redox Potential and Electronic Structure Effects of Proximal Nonredox Active Cations in Cobalt Schiff Base Complexes. Inorg. Chem. 2017, 56 (6), 3713– 3718, DOI: 10.1021/acs.inorgchem.6b03098 DOI: https://doi.org/10.1021/acs.inorgchem.6b03098

Chantarojsiri, T.; Ziller, J. W.; Yang, J. Y. Incorporation of Redox-Inactive Cations Promotes Iron Catalyzed Aerobic C-H Oxidation at Mild Potentials. Chem. Sci. 2018, 9 (9), 2567– 2574, DOI: 10.1039/C7SC04486K DOI: https://doi.org/10.1039/C7SC04486K

Kang, K.; Fuller, J.; Reath, A. H.; Ziller, J. W.; Alexandrova, A. N.; Yang, J. Y. Installation of Internal Electric Fields by Non-Redox Active Cations in Transition Metal Complexes. Chem. Sci. 2019, 10 (43), 10135– 10142, DOI: 10.1039/C9SC02870F DOI: https://doi.org/10.1039/C9SC02870F

Goldsmith, Z. K.; Secor, M.; Hammes-Schiffer, S. Inhomogeneity of Interfacial Electric Fields at Vibrational Probes on Electrode Surfaces. ACS Cent. Sci. 2020, 6 (2), 304– 311, DOI: 10.1021/acscentsci.9b01297 DOI: https://doi.org/10.1021/acscentsci.9b01297

Baopeng Yang, Kang Liu, HuangJingWei Li et. al. Accelerating CO2 Electroreduction to Multicarbon Products via Synergistic Electric–Thermal Field on Copper Nanoneedles. J. Am. Chem. Soc. 2022, 144, 7, 3039–3049. February 3, 2022. https://doi.org/10.1021/jacs.1c11253 DOI: https://doi.org/10.1021/jacs.1c11253

Devendra Mani, Tarun Kumar Roy, Jai Khatri, Gerhard Schwaab, Sebastian Blach, Christoph Hölzl, Harald Forbert, Dominik Marx, and Martina Havenith. Internal Electric Field-Induced Formation of Exotic Linear Acetonitrile Chains. Phys. Chem. Lett. 2022, 13, 29, 6852–6858. Publication Date:July 21, 2022. https://doi.org/10.1021/acs.jpclett.2c01482 DOI: https://doi.org/10.1021/acs.jpclett.2c01482

Cassone, G., Sponer, J. & Saija, F. Ab Initio Molecular Dynamics Studies of the Electric- Field-Induced Catalytic Effects on Liquids. Top Catal 65, 40–58 (2022). https://doi.org/10.1007/s11244-021-01487-0. DOI: https://doi.org/10.1007/s11244-021-01487-0

Mingyu Wan, Han Yue, Jaime Notarangelo, Hongfu Liu, and Fanglin Che. Deep Learning-Assisted Investigation of Electric Field–Dipole Effects on Catalytic Ammonia Synthesis. JACS Au 2022, 2, 6, 1338–1349. https://doi.org/10.1021/jacsau.2c00003 DOI: https://doi.org/10.1021/jacsau.2c00003

XIAOYAN HUANG, CHUN TANG, JIEQIONG LI, et. al. Electric field–induced selective catalysis of single-molecule reaction. SCIENCE ADVANCES. 21 Jun 2019. Vol 5, Issue 6. DOI: 10.1126/sciadv.aaw3072 DOI: https://doi.org/10.1126/sciadv.aaw3072

Zang, Y., Zou, Q., Fu, T. et al. Directing isomerization reactions of cumulenes with electric fields. Nat Commun 10, 4482 (2019). https://doi.org/10.1038/s41467-019-12487-w DOI: https://doi.org/10.1038/s41467-019-12487-w

Pan, Y., Wang, X., Zhang, W. et al. Boosting the performance of single-atom catalysts via external electric field polarization. Nat Commun 13, 3063 (2022). https://doi.org/10.1038/s41467-022-30766-x DOI: https://doi.org/10.1038/s41467-022-30766-x

Fried, S. D. & Boxer, S. G. Electric fields and enzyme catalysis. Annu. Rev. Biochem. 86, 387–415 (2017). DOI: https://doi.org/10.1146/annurev-biochem-061516-044432

Zoi, I., Antoniou, D. & Schwartz, S. D. Electric fields and fast protein dynamics in enzymes. J. Phys. Chem. Lett. 8, 6165–6170 (2017). DOI: https://doi.org/10.1021/acs.jpclett.7b02989

Hekstra, D. R. et al. Electric-field-stimulated protein mechanics. Nature 540, 400–405 (2016). DOI: https://doi.org/10.1038/nature20571

Fortunato, G.V., Pizzutilo, E., Katsounaros, I. et al. Analysing the relationship between the fields of thermo- and electrocatalysis taking hydrogen peroxide as a case study. Nat Commun 13, 1973 (2022). https://doi.org/10.1038/s41467-022-29536-6 DOI: https://doi.org/10.1038/s41467-022-29536-6

Ciampi, S., Darwish, N., Aitken, H. M., Díez-Pérez, I., and Coote, M. L. (2018). Harnessing Electrostatic Catalysis in Single Molecule, Electrochemical and Chemical Systems: a Rapidly Growing Experimental Tool Box. Chem. Soc. Rev. 47, 5146–5164. doi:10.1039/ c8cs00352a DOI: https://doi.org/10.1039/C8CS00352A

Yi Shen, Yu Mu, Dunwei Wang, Chong Liu, Paula Diaconescu. Tuning reactivity through modifications of organometallic complexes on an electrode surface. October 2022. DOI: 10.26434/chemrxiv-2022-pfqrp DOI: https://doi.org/10.26434/chemrxiv-2022-pfqrp

Wöhler, F. (1835). Grundriss der Chemie: Unorganische Chemie [Foundations of Chemistry: Inorganic Chemistry]. Berlin: Duncker und Humblot. p. 4.

Jensen, W. B. (2007). "the origin of the oxidation-state concept". J. Chem. Educ. 84 (9): 1418–1419. Bibcode:2007JChEd..84.1418J. doi:10.1021/ed084p1418.

William B. Jensen. The Origin of the Oxidation-State Concept. J. Chem. Educ. 2007, 84, 9, 1418. https://doi.org/10.1021/ed084p1418 DOI: https://doi.org/10.1021/ed084p1418

Viswanathan, B., Gulam Razul, M. Electronegativity provides the relationship between formal charge, oxidation state, and actual charge. Found Chem (2022). https://doi.org/10.1007/s10698-022-09447-6 DOI: https://doi.org/10.1007/s10698-022-09447-6

VALENCE, CHEMICAL BOND, AND EXTENT OF OXIDATION – KEY NOTIONS IN CHEMISTRY Ya. A. UGAI. Угай Я. А. Валентность, химическая связь и степень окисления — важнейшие понятия химии. Соросовский образовательный журнал. — 1997. — № 3. — С. 53-57 ).

Nicholas C. 77. Norman, Paul G. Pringle. In defence of oxidation states. Dalton Transactions 2022, 51 (2), 400-410. https://doi.org/ 10.1039/D0DT03914D DOI: https://doi.org/10.1039/D0DT03914D

Hans-Peter Loock. Expanded Definition of the Oxidation State. J. Chem. Educ. 2011, 88, 3, 282–283. https://doi.org/10.1021/ ed1005213 [100] Swinehart, D.F. More on oxidation numbers. J. Chem. Educ. 1952, 29, 284. https://doi.org/10.1021/ed029p284 DOI: https://doi.org/10.1021/ed1005213

R. Resta. Charge States in Transition, Nature, 2008, 453 , 735 ) DOI: https://doi.org/10.1038/453735a

P. Karen , P. McArdle and J. Takats , Towards a Comprehensive Definition of Oxidation State (IUPAC Technical Report), Pure Appl. Chem., 2014, 86 , 1017 —1081. doi:10.1515/pac-2013-0505 DOI: https://doi.org/10.1515/pac-2013-0505

P. Karen, P. McArdle and J. Takats, Comprehensive Definition of Oxidation State (IUPAC Recommendations 2016), Pure Appl. Chem., 2016, 88, 831 —839. DOI: https://doi.org/10.1515/pac-2015-1204

Karen P. Oxidation state, a long-standing issue! Angew Chem Int Ed Engl. 2015 Apr 13;54(16):4716-26. doi: 10.1002/anie.201407561. DOI: https://doi.org/10.1002/anie.201407561

Rebeca G. Castillo,Dr. Anselm W. Hahn,Dr. Benjamin E. Van Kuiken, Dr. Justin T. Henthorn,Jeremy McGale,Prof. Dr. Serena DeBeer. Probing Physical Oxidation State by Resonant X-ray Emission Spectroscopy: Applications to Iron Model Complexes and Nitrogenase. Angewandte Chemie. Volume 60, Issue 18. April 26, 2021. Pages 10112-10121. https://doi.org/10.1002/anie.202015669 DOI: https://doi.org/10.1002/anie.202015669

The modern theory of valency. L. Pauling, J. Chem. Soc., 1948, 1461. DOI: 10.1039/JR9480001461. DOI: https://doi.org/10.1039/jr9480001461

Ning Qin, Sicen Yu, Zongwei Ji, Yanfang Wang, Yingzhi Li, Shuai Gu, Qingmeng Gan, Zhenyu Wang, Zhiqiang Li, Guangfu Luo,

Kaili Zhang and Zhouguang Lu. Oxidation State as a Descriptor in Oxygen Reduction Electrocatalysis. CCS Chem. 2022, Just Published. DOI:10.31635/ccschem.022.202101531. https://doi.org/10.31635/ccschem.022.202101531 DOI: https://doi.org/10.31635/ccschem.022.202101531

Gabor A. Somorjai. Surface Science and Catalysis. Science 22 Feb 1985: Vol. 227, Issue 4689, pp. 902-908. DOI: 10.1126/ science.227.4689.902 DOI: https://doi.org/10.1126/science.227.4689.902

Rong Ye, Tyler J. Hurlburt, Kairat Sabyrov, Selim Alayoglu, and Gabor A. Somorjai. Molecular catalysis science: Perspective on unifying the fields of catalysis. PNAS | May 10, 2016 | vol. 113 | no. 19 | 5159–5166. https://doi.org/10.1073/pnas.1601766113 DOI: https://doi.org/10.1073/pnas.1601766113

Evgenii T Denisov and N M Emanuel' CATALYSIS BY SALTS OF METALS OF VARIABLE OXIDATION STATE IN LIQUID-PHASE OXIDATION REACTIONS. (1960). Russ. Chem. Rev. 29. 645. DOI: https://doi.org/10.1070/RC1960v029n12ABEH001261

Ferreira-Aparicio, P., Bachiller-Baeza, B., Rodríguez-Ramos, I. et al. Correlation between metal oxidation state and catalytic activity: hydrogenation of crotonaldehyde over Rh catalysts. Catalysis Letters 49, 163–167 (1997). https://doi.org/10.1023/A:1019009422572 DOI: https://doi.org/10.1023/A:1019009422572

De Luna, P., Quintero-Bermudez, R., Dinh, CT. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018). https://doi.org/10.1038/s41929-017-0018-9 DOI: https://doi.org/10.1038/s41929-017-0018-9

Kilian Muñiz. High-Oxidation-State Palladium Catalysis: New Reactivity for Organic Synthesis. Angewandte Chemie. Volume 48, Issue50. December 7, 2009. Pages 9412-9423. https://doi.org/ 10.1002/anie.200903671 DOI: https://doi.org/10.1002/anie.200903671

Billow, B., McDaniel, T. & Odom, A. Quantifying ligand effects in high-oxidation-state metal catalysis. Nature Chem 9, 837–842 (2017). https://doi.org/10.1038/nchem.2843 DOI: https://doi.org/10.1038/nchem.2843

Carlos Arroniz, Guilhem Chaubet, and Edward A. Anderson. Dual Oxidation State Tandem Catalysis in the Palladium-Catalyzed Isomerization of Alkynyl Epoxides to Furans. ACS Catal. 2018, 8, 9, 8290–8295. https://doi.org/10.1021/acscatal.8b02248 DOI: https://doi.org/10.1021/acscatal.8b02248

Liu, Y.; Ying, Y.; Fei, L.; Liu, Y.; Hu, Q.; Zhang, G.; Pang,S. Y.; Lu, W.; Mak, C. L.; Luo, X.; Zhou, L.; Wei, M.; Huang, H.Valence Engineering via Selective Atomic Substitution onTetrahedral Sites in Spinel Oxide for Highly Enhanced Oxy-gen Evolution Catalysis. J. Am. Chem. Soc. 2019, 141, 8136–8145. https://doi.org/10.1021/ jacs.8b13701 DOI: https://doi.org/10.1021/jacs.8b13701

Xingxing Jiang, Xuan Li, Yan Kong, Chen Deng, Xiaojie Li, Qi Hu, Hengpan Yang, Chuanxin He. Oxidation State Modulation of Bimetallic Tin-Copper Oxide Nanotubes for Selective CO2 Electroreduction to Formate. Small ( IF 15.153 ) Pub Date: 2022-10-11 , DOI:10.1002/ smll.202204148