Investigation of the Er$_2$Se$_3$-Bi$_2$Se$_3$ system

Sultanova Samina Qeys1, Hasanova Zivar Tofiq2, Ismailov Zakir Islam3

1 scientific worker Inorganic materials science research laboratory; Baku State University; Republic of Azerbaijan
2 scientific worker Inorganic materials science research laboratory; Baku State University; Republic of Azerbaijan
3 Candidate of technical sciences, Associate Professor of the Department of General and Inorganic Chemistry; Baku State University; Republic of Azerbaijan

Abstract. Methods of physicochemical analysis, namely differential thermal analysis (DTA), high temperature differential thermal analysis (HTTA), X-ray phase analysis (XRD), microstructural analysis (MSA) and microhardness measurements are used to determine the nature of the physicochemical interaction in the Er$_2$Se$_3$-Bi$_2$Se$_3$ ternary system. In the system based on Bi$_2$Se$_3$, solid solutions are formed, the boundaries of which are up to 3 mol% Er$_2$Se$_3$ at room temperature, and at the eutectic temperature it reaches about 8 mol% Er$_2$Se$_3$. The ternary combination of ErBi$_2$Se$_3$ with an α-solid solution forms a eutectic, the coordinates of which are 20 mol% Er$_2$Se$_3$ and 810 K.

Keywords: system, phase, crystallization, alloy, temperature, section, liquidus
CHEMISTRY AND MATERIALS SCIENCE

Introduction

Chalcogenides of antimony and bismuth are promising materials for optoelectronic devices [1, 2], solar cells [3], thermoelectric converters [4-6], photo electrochemical cells [7], optical recording [8], lithium-ion batteries [9, 10].

According to [15, 16], one of the effective and promising ways to improve the thermoelectric properties of compounds is doping.

The study of chemical interaction in Er-B-X (B-Sb, Bi; X=S, Se, Te) systems is of interest from the point of view of improving thermoelectric properties.

Experimental part

The initial materials for the synthesis of alloys were Er metal "Erm-O"; Bi "B-4"; Se "B-4".

The alloys were obtained by direct alloying of the components in evacuated quartz ampoules at 900-1300K, depending on the composition, followed by slow cooling in a switched off furnace. To obtain an equilibrium state, the alloys were subjected to homogenizing annealing in evacuated quartz ampoules at temperatures 50-100 K below the solidus temperature for two weeks.

The study was carried out by a complex of methods of physical and chemical analysis.

Differential thermal analysis (DTA) was performed using an NTR-73 pyrometer and Thermoscan-2. The liquidus temperature of the high-temperature part of the diagrams was determined on a VDTA-8 in an inert atmosphere using W-W/Re thermocouples. Heating rate 40 deg./min.

X-ray diffraction analysis (XRD) was carried out by taking X-ray diffraction patterns of powders on a Bruker D8 ADVANCE diffractometer with Cu Kα radiation.

For microstructural analysis (microscope MIM-7), an etchant with the composition of 10 % mol H₂SO₄ + 45r K₂Cr₂O₇ + 90 mol% H₂O was used. Etching time was 26s.

The microhardness of the alloys was measured on a PMT-3 microhardness tester at loads of 10 and 20 g. The measurement error was 2.2–4.3%.

Results and discussions

After homogenization of the samples was completed, physicochemical analysis was carried out. Based on the results
of differential thermal analysis of the samples, it was established that the Er2Se3-Bi2Se3 section is a quasi-binary section of the Er-Bi-Se ternary system. The state diagram of the Er2Se3-Bi2Se3 system has been constructed (Fig.1).

![Phase diagram of the Bi2Se3-Er2Se3 system](image)

It can be seen from the figure that the Bi2Se3-Er2Se3 section belongs to the simple eutectic type. At a ratio of components of 1:1, a ternary compound of composition ErBiSe3 is formed in the system by a peritectic reaction at a temperature of 1285 K.
The ErBiSe$_3$ compound forms a eutectic with an α-solid solution based on Sb$_2$Te$_3$. Eutectic coordinates is 80 mol% Bi$_2$Se$_3$ and 800 K.

The formation of solid solutions based on Bi$_2$Se$_3$ was found, the boundary of which is approximately 3 mol.% Bi$_2$Se$_3$ at a temperature of 300 K.

By indexing the diffraction pattern of the 1:1 composition alloy, it was found that ErBiSe$_3$ crystallizes in a tetragonal syngony with unit cell parameters, $a = 18.95\text{Å}$; $c = 12.68\text{Å}$.

Conclusion:

By using the DTA, HTDA, XRD, MSA and microhardness measurements, the character of the physicochemical interaction in the Er-Bi-Se ternary system are studied. It has been established that the Bi$_2$Se$_3$-Er$_2$Se$_3$ sections are quasi-binary.

References:

